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1 Introduction

The transition from characteristic functions to corresponding distribution functions is commonly

performed with the help of the Fourier inversion formula

F (x)− F (y) =
1

2π
lim
T→∞

T∫

−T

e−itx − e−ity

−it f(t) dt, (1.1)

where

f(t) =

∞∫

−∞
eitx dF (x) (1.2)

denotes the Fourier–Stieltjes transform (the characteristic function) of an arbitrary Borel prob-

ability measure μ on the real line with the associated distribution function F (x) = μ((−∞, x])

and x, y ∈ R are points of continuity of F .

Although the convergence in (1.1) might not be uniform with respect to x, y, in various

asymptotic problems it is desirable to have a uniform bound for the error of approximation

δF (T ) = sup
x,y

∣∣∣∣∣(F (x)− F (y))− 1

2π

T∫

−T

e−itx − e−ity

−it f(t) dt

∣∣∣∣∣ (1.3)
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for large values of T . One natural bound which immediately follows from (1.1) is given by

δF (T ) �
2

π

∞∫

T

|f(t)|
t

dt. (1.4)

If the measure μ is absolutely continuous and has a density of bounded total variation, then

f(t) = O(1/t) as t→ ∞, and (1.4) yields δF (T ) = O(1/T ). However, in general, the integral in

(1.4) can be divergent.

For quantified statements, one can also use the Lévy (maximal) concentration function

QF (h) = sup
x

P{x � X � x+ h} = sup
x

(F (x+ h)− F (x−)), h � 0,

where X is a random variable with distribution μ. For example, suppose that μ is unimodal

(i.e., it has a density p(x) which is nondecreasing for x < a and is nonincreasing for x > a for

some point a ∈ R). In this case, it was shown by Ushakov [1] that, for all t > 0,

|f(t)| � QF (π/t)

(see also [2, p. 95]). Using this pointwise bound in (1.4), we find

δF (T ) �
2

π

π/T∫

0

QF (h)

h
dh. (1.5)

In this paper, we consider a general situation (including discrete probability distributions),

thus removing any constraint on the shape of the distribution.

Proposition 1.1. Given a distribution function F , for all T > 0

δF (T ) �
2

1 + T
+ 4T

1∫

0

QF (h)

(1 + Th)2
dh. (1.6)

Under quasi-Lipschitz conditions posed on F , the last integral can be further estimated.

Corollary 1.2. If the distribution function F satisfies

|F (x)− F (y)| �M (ε+ |x− y|), x, y ∈ R, (1.7)

with some M � 0 and ε � 0, then for all T � 2

δF (T ) �
2

T
+ 4M

(
ε+

log T

T

)
. (1.8)

If M � 1, one can simplify the above inequality as the representation

F (x)− F (y) =
1

2π

T∫

−T

e−itx − e−ity

−it f(t) dt+ θM
(
ε+

log T

T

)
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with a quantity θ bounded in absolute value.

The logarithmic term in (1.8) cannot be removed under the condition (1.7), even with ε = 0,

i.e., when μ has a bounded density p. In this case, let us introduce the functional

M(F ) = ‖F‖Lip = ess sup
x

p(x),

where ‖F‖Lip denotes the Lipschitz seminorm (with respect to the Euclidean distance).

Proposition 1.3. For M > 0 and T � 2M

c0
log(T/M)

T/M
� sup

M(F )=M
δF (T ) � c1

log(T/M)

T/M
(1.9)

with some absolute constants c1 > c0 > 0.

These relations are invariant under linear transformations: (1.9) does not change when the

random variable X with distribution function F is multiplied by any positive constant.

As for distribution functions of class Lip(α) with parameter α < 1, there is a similar upper

bound, but without the logarithmic term.

Corollary 1.4. Let 0 < α < 1. If the distribution function F satisfies

|F (x)− F (y)| �M (ε+ |x− y|α), x, y ∈ R,

with some M � 0 and ε � 0, then for all T > 0,

δF (T ) �
2

T
+ 4M

(
ε+

1

(1− α)Tα

)
.

If ε = 0, this bound is consistent with what is obtained on the basis of the inequality (1.5),

up to an α-depending factor.

The right-hand side of (1.6) can also be related to the characteristic function f associated

to F , by applying Esseen’s upper bound

QF (h) � ch

1/h∫

0

|f(t)| dt, h > 0,

where c is an absolute constant (see [3]). This leads to the inequality

δF (T ) �
2

T
+
c log T

T

T∫

0

|f(t)| dt, T � 2.

However, here the logarithmic term can be removed. One smoothing type result by Prawitz [4]

implies the following sharpening of the upper bound (1.4).

Proposition 1.5. Let X be a random variable with distribution function F and characteristic

function f . For any T > 0,

δF (T ) �
2

T

T∫

0

|f(t)| dt. (1.10)
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In particular, if f(t) is nonnegative, then with some absolute constant c > 0,

δF (T ) � cP{|X| � 1/T}. (1.11)

If, additionally, X has a bounded density (which is equivalent to the integrability of f when

this function is nonnegative), the latter inequality yields

δF (T ) � 2c
M(F )

T
. (1.12)

This improves upon (1.8).

2 Functions of Bounded Total Variation

Proposition 1.1 is a consequence of a more general assertion for the class of functions F of

bounded total variation on the real line. Denote by |dF (z)| the variation of F viewed as a finite

positive Borel measure on the real line with total variation norm ‖F‖TV.

Proposition 2.1. Let F be a function of bounded total variation with the Fourier–Stieltjes

transform f defined by (1.2). For all x, y ∈ R and T > 0

F (x)− F (y) =
1

2π

T∫

−T

e−itx − e−ity

−it f(t) dt

+ θ1

∞∫

−∞

|dF (z)|
1 + T |z − x| + θ2

∞∫

−∞

|dF (z)|
1 + T |z − y| (2.1)

with some complex numbers θ1 and θ2 such that |θj | � 1.

The last two integrals in (2.1) are bounded by ‖F‖TV. Since also |F (x) − F (y)| � ‖F‖TV,

we see that the error function (1.3) is uniformly bounded, namely,

δF (T ) � 3 ‖F‖TV, T � 0.

Moreover, by the Lebesgue dominated convergence theorem, these integrals are convergent to

zero as T → ∞, as long as x and y are points of continuity of F , and then in the limit we return

to (1.1). Hence (2.1) can serve as a quantification of the Fourier inversion formula.

Now, introduce the function

R(t) =

t∫

0

sinu

u
du, t ∈ R.

It satisfies R(t) → π/2 as t→ ∞ and R(−t) = −R(t) for any t > 0. Also, put

r(t) =

∞∫

t

sinu

u
du =

π

2
−R(t). (2.2)
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As a preliminary step towards the proof of Proposition 2.1, first let us prove the following

assertion.

Lemma 2.2. For all t � 0

|r(t)| � π

1 + t
. (2.3)

Proof. Integrating by parts with t > 0, we have

∞∫

t

sinu

u
du =

cos t

t
−

∞∫

t

cosu

u2
du (2.4)

which implies

|r(t)| � 2

t
� π

1 + t
, t � t0 ≡ 1

π
2 − 1

∼ 1.752... .

To treat the values 0 � t � t0, consider the function

ψ(t) = r(t)− π

1 + t
=
π

2
−

t∫

0

sinu

u
du− π

1 + t
.

Using the inequality

sinu � u− u3

6
(u > 0),

we get

ψ(t) � v(t) ≡ π

2
− t+

t3

18
− π

1 + t
, t � 0.

To show that v(t) � 0 in the interval 0 � t � t0, consider the polynomial

P (t) = (1 + t)v(t) = (1 + t)
(π
2
− t+

t3

18

)
− π.

We have P (0) = v(0) = −π/2 and

P ′(t) =
π

2
− 1− 2t+

t2

6
+

2t3

9
, P ′(0) =

π

2
− 1.

Since also

P ′′(t) =
2

3
(t+ 2)

(
t− 3

2

)
,

we conclude that P (t) is concave in 0 � t � 3/2 and is convex in t � 3/2. This implies that, on

the first interval,

P (t) � P (0) + P ′(0)t � −π
2
+

(π
2
− 1

) 3

2
=
π

4
− 3

2
< 0.

Since P (t0) = −2.82... < 0, we also have, by convexity, P (t) � 0 in 3/2 � t � t0. Thus, P (t) � 0

for all 0 � t � t0, and the same is true for v(t) and ψ(t) as well, i.e., r(t) � π/(1 + t).
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As the next step, consider the function

ψ(t) = −r(t)− π

1 + t
= −π

2
+

t∫

0

sinu

u
du− π

1 + t
.

Using sinu � u, we have

ψ(t) � v(t) ≡ −π
2
+ t− π

1 + t
.

The function v(t) is increasing, so that

v(t) � v(t0) < v(2) = 2− 5π

6
< 0.

Thus, ψ(t) � 0, i.e., −r(t) � π/(1 + t). The two bounds yield the desired inequality (2.3).

Proof of Proposition 2.1. By the Fubini theorem,

I ≡
T∫

−T

e−itx − e−ity

−it f(t) dt =

∞∫

−∞

[ T∫

−T

eit(z−x) − eit(z−y)

−it dt

]
dF (z)

= −2

∞∫

−∞

[ T∫

0

sin(t(z − x))− sin(t(z − y))

t
dt

]
dF (z).

Hence, in terms of the function R, we obtain the general representation

1

2
I =

∞∫

−∞
[R(T (z − y))−R(T (z − x))] dF (z).

We can assume that x, y are points of continuity of F and x > y. Splitting the integration

into the three regions, write

1

2
I =

y∫

−∞
[R(T (x− z))−R(T (y − z))] dF (z)

+

∞∫

x

[R(T (z − y))−R(T (z − x))] dF (z) +

x∫

y

[R(T (z − y)) +R(T (x− z))] dF (z).

Equivalently, by the definition (2.2),

1

2
I =

y∫

−∞
[r(T (y − z))− r(T (x− z))] dF (z) +

∞∫

x

[r(T (z − x))− r(T (z − y))] dF (z)

+

x∫

y

[π − r(T (z − y))− r(T (x− z))] dF (z).
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Let us rewrite this equality as

1

2
I − π(F (x)− F (y)) =

y∫

−∞
[r(T (y − z))− r(T (x− z))] dF (z)

+

∞∫

x

[r(T (z − x))− r(T (z − y))] dF (z)−
x∫

y

[r(T (z − y)) + r(T (x− z))] dF (z). (2.5)

Applying the bound (2.3), we get

∣∣∣ 1
2
I − π(F (x)− F (y))

∣∣∣ �
y∫

−∞

π

1 + T (y − z)
dF (z) +

y∫

−∞

π

1 + T (x− z)
dF (z)

+

∞∫

x

π

1 + T (z − x)
dF (z) +

∞∫

x

π

1 + T (z − y)
dF (z) +

x∫

y

( π

1 + T (z − y)
+

π

1 + T (x− z)

)
dF (z).

As a result,

∣∣∣ 1

2π
I − (F (x)− F (y))

∣∣∣ �
∞∫

−∞

( 1

1 + T |z − y| +
1

1 + T |x− z|
)
dF (z).

The proposition is proved.

3 Proof of Proposition 1.1, Corollaries 1.2 and 1.4

From now on, let F be a distribution function. In this case, the relation (2.1) is simplified to

F (x)− F (y) =
1

2π

T∫

−T

e−itx − e−ity

−it f(t) dt+ θ1

∞∫

−∞

dF (z)

1 + T |z − x| + θ2

∞∫

−∞

dF (z)

1 + T |z − y| (3.1)

with some complex numbers θj such that |θj | � 1.

Proof of Proposition 1.1. To estimate the last integral in (3.1), assume without loss of

generality that y = 0 and that it is the point of continuity of F . First, note that

∞∫

a

1

1 + Tz
dF (z) � 1

1 + Ta
(1− F (a)),

where a > 0 is a point of continuity of F . On the other hand, integrating by parts, we have

a∫

0

1

1 + Tz
dF (z) =

1

1 + Ta
(F (a)− F (0)) + T

a∫

0

F (z)− F (0)

(1 + Tz)2
dz

� 1

1 + Ta
(F (a)− F (0)) + T

a∫

0

QF (z)

(1 + Tz)2
dz.
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Combining the two estimates and letting a→ 1, we get

∞∫

0

1

1 + Tz
dF (z) � 1

1 + T
(1− F (0)) + T

1∫

0

QF (z)

(1 + Tz)2
dz.

By a similar argument,

0∫

−∞

1

1 + T |z| dF (z) �
1

1 + T
F (0) + T

1∫

0

QF (z)

(1 + Tz)2
dz,

so that
∞∫

−∞

1

1 + T |z| dF (z) �
1

1 + T
+ 2T

1∫

0

QF (z)

(1 + Tz)2
dz.

More generally, for all y ∈ R

∞∫

−∞

1

1 + T |z − y| dF (z) �
1

1 + T
+ 2T

1∫

0

QF (z)

(1 + Tz)2
dz.

By (3.1), the error function (1.3) admits the upper bound (1.6).

Proof of Corollaries 1.2 and 1.4. In the setting of Corollary 1.2, QF (h) �M(ε+ h) for

all h � 0. Hence the integral in (1.6) does not exceed

M

1∫

0

ε+ h

(1 + Th)2
dh � Mε

T
+
M

T 2

(
log(1 + T )− T

1 + T

)
.

Here, the expression in the brackets is smaller than log T for T � 2.

In Corollary 1.4, we assume that QF (h) � M(ε + hα), h � 0. Then the integral in (1.6) is

bounded by

M

∞∫

0

ε+ hα

(1 + Th)2
dh =

Mε

T
+

M

Tα+1

∞∫

0

uα

(1 + u)2
du

<
Mε

T
+

M

Tα+1

∞∫

0

du

(1 + u)2−α
=
Mε

T
+

M

(1− α)Tα+1
.

The corollaries are proved.

Remark 3.1. In connection with the use of the function QF in Proposition 1.1, one can

also recall the Kawata mean concentration function

CF (h) =
1

h

∞∫

−∞
(F (x+ h)− F (x))2 dx, h � 0,
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which is related to the maximal concentration function via the inequalities

1

2
QF (h/2)

2 � CF (h) � QF (h).

The relationship between the behavior of QF (h) and CF (h) at h = 0 in the form of Lipschitz

properties of F and that of the characteristic function f(t) at infinity were studied by Kawata

[5] and Makabe [6]. Some portion of connections is based on the Parseval identity

CF (2h) =
1

2π

∞∫

−∞

sin2(ht)

ht2
|f(t)|2 dt.

4 Proof of Proposition 1.3

First, let us verify that the inequality (1.9) is invariant with respect to linear transformations

of a random variable X with distribution functions F . Define

IF,T (x, y) =

T∫

−T

e−itx − e−ity

−it f(t) dt,

where f is the characteristic function of X. For λ > 0 the random variable λX has respectively

the distribution and characteristic functions Fλ(x) = F (x/λ), fλ(t) = f(λt), (x, t ∈ R). Hence

IFλ,T (x, y) =

λT∫

−λT

e−itx/λ − e−ity/λ

−it f(t) dt = IF,λT (x/λ, y/λ),

and it follows from the definition (1.3) that δFλ
(T ) = δF (λT ).

In addition, M(Fλ) = M(F )/λ. Therefore, if (1.9) holds for F with an arbitrary value

T � 2M(F ), it will hold automatically for Fλ with T � 2M(Fλ).

As a consequence, to prove the upper bound in (1.9), we can assume without loss of generality

that M = 1. But then, by Corollary 1.2, for any T � 2

δF (T ) �
2

T
+ 4

log T

T
� 7

log T

T
,

i.e., we obtain (1.9) with c1 = 7.

Let us now turn to the lower bound. By the homogeneity with respect to X, assume again

that M = 1. Then we need to show that

δF (T ) � c0
log T

T
(4.1)

for some distribution function F such that M(F ) = 1. So, fix T � 2.

Suppose that F corresponds to the probability measure μ which is supported on the interval

(0, 2π) and is symmetric about the point π. In particular, x = 2π+2πm/T and y = −2πm/T are

points of continuity of F for any integer m � 1 (which will be chosen later on), with F (x) = 1,

F (y) = 0, so that F (x)− F (y) = 1.
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As in the proof of Proposition 2.1, define

I =

T∫

−T

e−itx − e−ity

−it f(t) dt.

Note that the first two integrals in (2.5) are vanishing, and this identity is simplified to

1

2
I − π = −

2π∫

0

(r(T (z − y) + r(T (x− z))) dF (z) = −2

2π∫

0

r(T (z − y)) dF (z),

where we used the symmetry assumption at the last step. This gives

δF (T ) �
2

π

2π∫

0

r(T (z − y)) dF (z). (4.2)

Put T0 = [T ] and define Δ to be the union of the intervals of the form

Δk =
2π

T
(k − h, k + h), k = 1, . . . , T0 − 1,

with 0 < h < 1/2, so that these intervals are disjoint. In this case, Δ is contained in (0, 2π) and

has the Lebesgue measure

|Δ| =
T0−1∑
k=1

|Δk| = 4πh
T0 − 1

T
.

Moreover, let us require that |Δ| = 1, i.e.,

h =
1

4π

T

T0 − 1
.

Since the last ratio is maximized for T ↑ 3, we have

1

4π
� h � 3

4π
. (4.3)

Now, define μ to be the uniform distribution on Δ, so that M(F ) = 1 and, by (4.2),

δF (T ) �
2

π

∫

Δ

r(T (z − y)) dz. (4.4)

It remains to properly estimate the above integrand. For this aim, let us integrate in (2.4) once

more, which leads to

r(t) =
cos t

t
+

sin t

t2
− 2

∞∫

t

sinu

u3
du.

The last integral is smaller than 1/(2t2), so,

r(t) � cos t

t
− 2

t2
=

1

t

(
cos t− 2

t

)
, t > 0. (4.5)
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Let t = T (z − y) for z ∈ Δk, 1 � k � T0. Then t = 2π(k + θ) + 2πm for some θ ∈ (−h, h),
so that

cos t = cos(2πθ) � cos(2πh) � cos(3/2) = 0.0707...,

where we made use of the upper bound in (4.3). On the other hand,

t � 2π(k − h) + 2πm � 2πm.

It follows that

cos t− 2

t
� cos(3/2)− 1

πm
> 0.01,

where, at the last step, we choose m = 6. Then t � 2π(k+ h) + 2πm < 2π(k+7) and, by (4.5),

r(t) � 0.01

2π(k + 7)
, t = T (z − y), z ∈ Δk.

Returning to (4.4), this gives with some absolute constant c0 > 0

δF (T ) �
2

π

T0∑
k=1

0.01

2π(k + 7)
|Δk| = 0.04h

πT

T0∑
k=1

1

k + 7
� c0

log T

T
,

where we made use of the lower bound in (4.3). This proves (4.1).

5 Proof of Proposition 1.5

We apply smoothing inequalities due to Prawitz [4]: For an arbitrary distribution function

F with characteristic function f and any point x ∈ R

1

2
−

T∫

−T

e−itxKT (−t)f(t) dt � F (x) � 1

2
+

T∫

−T

e−itxKT (t)f(t) dt. (5.1)

Here, for a fixed value T > 0 the kernel is defined by

KT (t) =
1

T
K
( t
T

)
,

where

K(t) =
1

2
(1− |t|) + i

2

[
(1− |t|) cot(πt) + sgn(t)

π

]
, |t| < 1.

The integrals in (5.1) are understood as principal values, i.e., as limits of the integrals over the

regions ε < |t| < T as ε ↓ 0. It was also mentioned in [4] that

∣∣∣K(t)− i

2πt

∣∣∣2 = 1

4
(1− |t|)2

[
1 +

( 1

πt
− cot(πt)

)]2
,

which can be estimated by means of the elementary bound

cot x � 1

x
− x

3

π2

π2 − x2
, 0 < x < π.

It is easy to see that this leads to

∣∣∣K(t)− i

2πt

∣∣∣ � 1

2
, |t| � 1.
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Applying this bound to (5.1), we arrive at the representation

F (x) =
1

2
+

1

2π

T∫

−T

e−itx

−it f(t) dt+R (5.2)

with the remainder term satisfying

|R| � 1

2T

T∫

−T

|f(t)| dt. (5.3)

Thus, for all x, y ∈ R

F (x)− F (y) =
1

2π

T∫

−T

e−itx − e−ity

−it f(t) dt+
θ

T

T∫

−T

|f(t)| dt

with some complex number θ = θ(x, y, T ) such that |θ| � 1. As a consequence, similarly to the

Esseen bound with h = 1/T , we obtain the desired inequality (1.10).

If f(t) is nonnegative, the normalized integral in (1.10) is equivalent to P{|X| � 1/T},
assuming that the random variable X has the distribution function F (see, for example, [7, p.

27]). Therefore, in this case, (1.10) can be written up to some absolute constant c as (1.11).

Remark 5.1. With the factor 1/T in front of the integral in (5.3), the representation (5.2)

appeared in [8, Lemma 4.1].

Let us explain why the inequality (1.11) improves upon (1.4). Consider the function

I(t) =

t∫

0

|f(s)| ds, t � 0,

assuming for a moment that I(t) = o(t) as t→ ∞. Then, integrating by parts, we have

∞∫

T

|f(t)|
t

dt =

∞∫

T

1

t
dI(t) =

I(T )

T
+

∞∫

T

I(t)

t2
dt � I(T )

T
.

At this step, the assumption on the growth of I(t) can be dropped. Hence (1.11) implies

δF (T ) � 2

∞∫

T

|f(t)|
t

dt,

i.e., (1.4) with an extra factor.

6 Squares of Bernoulli Sums

To illustrate Corollaries 1.2 and 1.4 by specific examples, let us fix an integer d � 1 and

consider the normalized sums

Z(d)
n =

1√
n
(X1 + · · ·+Xn)
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of independent random vectors Xk uniformly distributed in the discrete cube {−1, 1}d. By

the central limit theorem, the distributions of Z
(d)
n are weakly convergent as n → ∞ to the

distribution of the random vector Z(d) in R
d with the standard normal law.

Let F ∗d
n and F ∗d denote respectively the distribution functions of the random variables

ξ(d)n =
1

2
|Z(d)

n |2, ξ(d) =
1

2
|Z(d)|2.

If d = 1, we simplify the notation: Zn = Z
(1)
n , Z = Z(1), ξn = ξ

(1)
n , ξ = ξ(1), and similarly for

the distribution functions Fn = F
(1)
n , F = F (1).

Note that 2ξn is the square of the sum of n independent Bernoulli random variables taking

the values ±1 with probability 1/2, and ξ
(d)
n is the sum of d independent copies of ξn. Hence

F ∗d
n and F ∗d represent the d-th convolution power of Fn and F , respectively.

First let us look at the one-dimensional case d = 1. In terms of the distribution functions

Φn(x) = P{Zn � x} and Φ(x) = P{Z � x}, we have

Fn(x) = P{|Zn| �
√
2x} = 2Φn(

√
2x)− 1,

F (x) = P{|Z| �
√
2x} = 2Φ(

√
2x)− 1,

for all x � 0. It is well-known that, up to some absolute constant c > 0,

|Φn(x)− Φn(y)| � c
( 1√

n
+ |x− y|

)
, x, y ∈ R,

and obviously |Φ(x)− Φ(y)| � |x− y|. Thus,

Fn(x)− Fn(y) � c
( 1√

n
+

√
x−√

y
)
,

and F (x) − F (y) � √
x − √

y for x > y � 0. Since
√
x − √

y � √
x− y, we are in position to

apply Corollary 1.4 with α = 1/2. Introduce the characteristic functions

fn(t) = E eitZ
2
n/2 =

∞∫

−∞
eitx

2/2 dΦn(x), (6.1)

f(t) = EeitZ
2/2 =

∞∫

−∞
eitx

2/2 dΦ(x) =
1√

1− it
, t ∈ R, (6.2)

associated with the distribution functions Fn and F .

Corollary 6.1. For all x, y ∈ R and T > 0

Fn(x)− Fn(y) =
1

2π

T∫

−T

e−itx − e−ity

−it fn(t) dt+ θ
( 1√

n
+

1√
T

)
,

F (x)− F (y) =
1

2π

T∫

−T

e−itx − e−ity

−it f(t) dt+
θ√
T
,
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where θ is bounded in absolute value by an absolute constant.

Thus, if T � n, then δFn(T ) � c/
√
n and similarly for F . Note that Fn(x) makes a jump of

order 1/
√
n at x = 0 for large even values of n.

7 Approximation for Convolutions F ∗2
n

If d � 2, the remainder term in the Fourier inversion formula is improved for the d-th

convolution power F ∗d
n of the distribution Fn with its characteristic function fn(t)

d (recall that

fn(t) was defined in (6.1)). To see this, here we focus on the case d = 2. In what follows, we

use the sequence

εN =
log log logN

log logN
, N � 3

(putting ε1 = ε2 = 0 for definiteness).

Corollary 7.1. For all x, y ∈ R and T � 2

F ∗2
n (x)− F ∗2

n (y) =
1

2π

T∫

−T

e−itx − e−ity

−it fn(t)
2 dt+ θnεn

( 1

n
+

log T

T

)
,

where the quantity θ is bounded in absolute value by an absolute constant.

Note that the random variable ξ(2) has a standard exponential distribution with the distri-

bution function

F ∗2(x) = P{ξ(2) � x} = 1− e−x (x � 0)

and characteristic function f(t)2 = 1
1−it , cf. (6.2). Therefore, by (1.4),

F ∗2(x)− F ∗2(y) =
1

2π

T∫

−T

e−itx − e−ity

−it f(t)2 dt+
θ

T
.

To prove the corollary, we need an upper bound for the number of representations of a

natural number N as the sum of two squares of integers, which is commonly denoted as

r2(N) = card {(k1, k2) : k21 + k22 = N, k1, k2 ∈ Z}.

It is well known that r2(N) = o(N ε) for any ε > 0 as N tends to infinity. Let us give a more

precise statement which seems to be also known, although we cannot give a precise reference.

Lemma 7.2. For λ > 1/2 we have r2(N) � NλεN for all N large enough.

Proof. One can employ the following representation [9]: If

N = 2αpα1
1 . . . pαr

r qβ1
1 . . . qβs

s

is the decomposition of N into prime factors, where pi ≡ 1 (mod 4), qj ≡ 3 (mod 4), then

r2(N) =

⎧⎨
⎩
4 (α1 + 1) . . . (αr + 1), all βj are even

0, some of βj is odd.
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Therefore, starting from the prime factorization without the above specification

N = pα1
1 . . . pαr

r , 2 � p1 < · · · < pr, (7.1)

we have

r2(N) � 4 (α1 + 1) . . . (αr + 1) � 2r+2 α1 . . . αr. (7.2)

Necessarily, N � p1 . . . pr � r! implying that for all N large enough

r � λ
logN

log logN
. (7.3)

Indeed, assume that the opposite inequality holds. Then for a given ε > 0 we would get

log r − 1 > log λ− 1 + log logN − log log logN > (1− ε) log logN

for sufficiently large N . Using r! � (r/e)r
√
r and choosing ε = (2λ− 1)/(2λ+ 1), this would

lead to

log(r!) � r (log r − 1) +
1

2
log r > λ

logN

log logN
· (1− ε) log logN +

1− ε

2
log logN = logN,

contradicting to r! � N . Thus, by (7.3) with λ � 1/ log 2,

2r = er log 2 � exp
{ logN

log logN

}
,

so that, by (7.2),

r2(N) � 4α1 . . . αr exp
{ logN

log logN

}
. (7.4)

Now, taking the logarithm in (7.4), let us maximize the concave function in r real variables

u(α1, . . . , αr) = logα1 + · · ·+ logαr, α1, . . . , αr � 0,

subject to the linear condition c1α1 + · · · + crαr = c with ci = log pi and c = logN , according

to (7.1). Treating αr as a function of the remaining variables and assuming that r � 2, we have

∂u

∂αi
=

1

αi
− ci
cr

1

αr
= 0, 1 � i � r − 1,

which means that the point of maximum of u satisfies ciαi = b for all i � r. Since the sum of

ciαi is c, we get b = c/r, αi = c/(cir), so

maxu = log(α1 . . . αr) = log
cr

rrc1 . . . cr
.

This also holds for r = 1. Using c1 . . . cr � log 2, we get

α1 . . . αr �
( logN

r log 2

)r
.

But the function ((logN)/(x log 2))x is positive and increasing for 1 � x < (1/(e log 2)) logN .

In view of (7.3), our values of r belong to this interval for all N large enough as long as

1/2 < λ < (1/(e log 2)) ∼ 0.53... which can be assumed. We then get

( logN

r log 2

)r
�

(λ log logN
log 2

) λ logN
log logN

= exp
{ λ logN

log logN
(log log logN + log λ− log log 2)

}
.

It remains to recall (7.4) and note that λ can be as close to 1/2 as we wish.
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Proof of Corollary 7.1. Recall that

ξ(2)n =
1

2
Z2
n +

1

2
Z ′2
n ,

where Z ′
n is an independent copy of Zn. By the local limit theorem for the binomial distributions,

P
{
Zn =

k√
n

}
� c√

n
, k ∈ Z, (7.5)

with some absolute constant c > 0. Since the random variable ξ
(2)
n takes values of the form

N/(2n) with N = k21 + k22 (k1, k2 ∈ Z), the inequality (7.5) yields

P
{
ξ(2)n =

N

2n

}
=

∑
k21+k22=N

P
{
Zn =

k1√
n

}
P
{
Zn =

k2√
n

}
� c2

n
r2(N).

Note that |Zn| �
√
n. Hence we only need to consider the values N � 2n2. In this case, since

nεn is increasing for large n, while ε2n2 ∼ εn, from Lemma 7.2 for all n large enough we have

r2(N) � n
3
4
ε2n2 � nεn . Thus,

P
{
ξ(2)n =

N

2n

}
� c

n
nεn . (7.6)

Now, suppose that x > y � 0 and 1/n � x − y � 1. The interval [y, x] contains at most

[2n(x− y)] + 1 � 3n(x− y) points of the form N/(2n) with integers N . Hence

F ∗2
n (x)− F ∗2

n (y) =
∑

y< N
2n

�x

P
{
ξn =

N

2n

}
� 3cnεn (x− y).

Combining this with (7.6), it follows that F
(2)
n satisfies the quasi-Lipschitz condition

|F ∗2
n (x)− F ∗2

n (y)| � cnεn
( 1

n
+ |x− y|

)
(7.7)

for all x, y ∈ R up to some absolute constant c > 0. We are in position to apply Corollary 1.2

to Fn with ε = 1/n and M = cn2εn .

8 Approximation for Convolution Powers F ∗3
n

As the last example, consider the distribution functions F ∗3
n of the random variables

ξ(3)n =
1

2
Z2
n +

1

2
Z ′2
n +

1

2
Z ′′2
n ,

where Z ′
n, Z

′′
n are independent copies of Zn. The next assertion is analogous to Corollary 7.1.

Corollary 8.1. For all x, y ∈ R and T � 2

F ∗3
n (x)− F ∗3

n (y) =
1

2π

T∫

−T

e−itx − e−ity

−it fn(t)
3 dt+ θ nεn

( 1

n
+

log T

T

)
,
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where fn(t) is the characteristic function of 1
2 Z

2
n and where θ is bounded in absolute value.

Proof. By Lemma 7.2, the set Ω = {(k1, k2, k3) : k21 + k22 + k23 = N, kj ∈ Z, |kj | � n} has

cardinality

r3,n(N) = card (Ω) � c
√
nN3εN/4 (8.1)

(where c > 0 is an absolute value which can vary from place to place). Since ξ
(3)
n takes the

values N/(2n), where N = k21 + k22 + k23 with kj ∈ Z, |kj | � n, we obtain, by (7.5),

P
{
ξ(3)n =

N

2n

}
�

∑
(k1,k2,k3)∈Ω

P
{
Zn =

k1√
n

}
P
{
Zn =

k2√
n

}
P
{
Zn =

k3√
n

}
� c

n3/2
r3,n(N).

Hence, by (8.1),

P
{
ξ(3)n =

N

2n

}
� c

n
N3εN/4.

Since |Zn| �
√
n, it is necessary that N � 3n2. As we noted above, nεn is increasing for large

n, while ε3n2 ∼ εn. Therefore, we arrive at the same bound as in dimension two,

P
{
ξ(3)n =

N

2n

}
� c

n
nεn .

With a similar argument, this implies that the distribution functions Fn of the random variables

ξn satisfy the quasi-Lipschitz condition (7.7). One can therefore apply Corollary 1.2.

Remark 8.1. For the convolutions F ∗k
n with larger values of k (at least for k > 4) one can

derive similar representations as in Corollaries 7.1 and 8.1 without the factor nεn . In this case,

the number rk(n) of representations of n as a sum of k squares of integers is approximately n
k
2
−1

within k-dependent factors. There is an intensive literature on this topic (see, for example, [10]).
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